Finite Mixture Modeling via Skew-Laplace Birnbaum–Saunders Distribution
نویسندگان
چکیده
منابع مشابه
Skew Laplace Finite Mixture Modelling
‎This paper presents a new mixture model via considering the univariate skew Laplace distribution‎. ‎The new model can handle both heavy tails and skewness and is multimodal‎. ‎Describing some properties of the proposed model‎, ‎we present a feasible EM algorithm for iteratively‎ ‎computing maximum likelihood estimates‎. ‎We also derive the observ...
متن کاملFinite Mixtures of Multivariate Skew Laplace Distributions
In this paper, we propose finite mixtures of multivariate skew Laplace distributions to model both skewness and heavy-tailedness in the heterogeneous data sets. The maximum likelihood estimators for the parameters of interest are obtained by using the EM algorithm. We give a small simulation study and a real data example to illustrate the performance of the proposed mixture model.
متن کاملRobust mixture of experts modeling using the skew $t$ distribution
Mixture of Experts (MoE) is a popular framework in the fields of statistics and machine learning for modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are usually based on the normal distribution. However, it is known that for data with asymmetric behavior, heavy tails and atypical observations, the use of the normal distribution is unsuitable...
متن کاملDetermination of the number of components in finite mixture distribution with Skew-t-Normal components
Abstract One of the main goal in the mixture distributions is to determine the number of components. There are different methods for determination the number of components, for example, Greedy-EM algorithm which is based on adding a new component to the model until satisfied the best number of components. The second method is based on maximum entropy and finally the third method is based on non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Theory and Applications
سال: 2020
ISSN: 2214-1766
DOI: 10.2991/jsta.d.200224.008